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In this paper, the effects of initial imperfections on the buckling behavior of thick cylindrical
shells and curved panels are investigated. It is assumed that the shell has an axisymmetric
and periodic initial imperfection in the axial direction. The shell is assumed to have different
boundary conditions and subjected to pure external pressure loading. Governing differential
equations are developed on the basis of the second Piola-Kirchhoff stress tensor and are re-
duced to a homogenous linear system of equations using the differential quadrature method.
The effects of different boundary conditions, geometric ratios, curvature and imperfection
parameter on the buckling behavior of isotropic thick cylindrical shells and curved panels
are carefully discussed. The results obtained by the present method are verified with finite
element solutions and those reported in the literature.
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1. Introduction

Thick shells are widely used in various engineering applications, such as cooling towers, arch
dams, oil and gas industries, pressure vessels, offshore and onshore structures. Since, these struc-
tures are often subjected to severe loading conditions, it is important to investigate their ultimate
load carrying capacities. One of the most important failure modes of these structures is the loss
of stability. Hence, it is vital to investigate their buckling behavior in various loading conditions.
Several researches have been carried out on the buckling analysis of shells. Kardomateas (1993)
studied the effect of thickness on the buckling load of a transversely isotropic thick cylindrical
shell under axial compression. In his work, extensive study has been made on the performan-
ce of theories developed by Donnell (1933), Sanders (1963), Flugge (1960) and Danielson and
Simmonds (1969) for the critical load prediction of a cylindrical shell made of an isotropic ma-
terial and under the axial compression loading condition. Kardomateas (1996) also carried out
three-dimensional buckling analysis of thick orthotropic cylindrical shells under combined lo-
adings. The analytical solution based on the Donnell stability equation in the uncoupled form
was reported by Brush and Almorth (1975). Bushnell (1985) carried out analytical and numeri-
cal calculations and experimental investigations on the buckling of shells. It was reported that
analytical and experimental results were widely deviating. It was also reported that the cause
for such deviation are the inevitable differences called imperfections which are present in the real
structure and ignored in the perfect structural modeling. To achieve high structural performance
of important structures such as offshore, aircraft and aerospace structures, it will be necessary
to accurately predict critical conditions such as buckling phenomena of these structures. Ideally,
highly accurate predictions of the buckling behavior of shells and curved panels can be obta-
ined by appropriate consideration of their initial geometric imperfections, material properties,
boundary conditions and other features. In most of these structures, imperfections are expected
to be present, which are mainly produced during manufacturing process or caused by corrosion
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pitting. Buckling analysis of thin shells with geometrical imperfection had been studied by few
researchers. The effect of axisymmetric imperfections with axisymmetric buckling mode shapes
on the stability behavior of isotropic and composite cylindrical shells under axial compression
were investigated by Koiter (1980) and Elishakoff et al. (2001). Gusic et al. (2000) studied the
effects of thickness variation in the circumferential direction and geometrical imperfections on
the buckling behavior of thin cylindrical shells under the action of lateral pressure. Nguyen et
al. (2009) investigated buckling behavior of cylindrical shells with variable thickness in the axial
direction under the action of external pressure. Koiter (1963) presented an analytical formula
for the buckling load of a perfect, non-uniform cylindrical shell under axial compression loading.
Koiter et al. (1994) studied the influence of thickness variation on the buckling behavior of a
cylindrical shell subjected to axial compression. They assumed the thickness variation to be
axisymmetrical and very small compared with the shell thickness and showed that buckling load
reduction is a linear function of the imperfection parameter when it is small.
In this work, three dimensional stability equations of shells and curved panels are developed

on the basis of the second Piola-Kirchhoff stress tensor. The shell and panel are assumed to
have different boundary conditions at the edges and be subjected to a pure lateral pressure
loading. Also the influence of an axisymmetric and periodical imperfection on the buckling
load of an isotropic thick cylindrical shell and a curved panel is investigated. The differential
quadrature method is used to discrete differential equations and to obtain the buckling load
of the thick cylindrical panel. Numerical results are compared with finite element solutions and
results reported in the literature. Effects of various parameters including the boundary condition,
panel curvature, imperfection amplitude factor and geometric ratios on the buckling behavior
of the shell and curved panel are investigated.

2. Formulation of the problem

A thick cylindrical panel with the inner radius R1, length L, curvature angle β, variable mid-
surface radius a(x) and variable thickness h(x) is considered. The imperfection of the panel
wall is assumed to be axisymmetric and periodic in the axial direction. The geometry, the
coordinate system (r, θ, x), corresponding displacement components (w, v, u) and imperfection
of the cylindrical panel are shown in Fig. 1. It is also assumed that the thicknesses of the shell
obey the following formula

h(x) = h0
[

1− ε cos
π

L

(

x−
L

2

)]

(2.1)

where h0 is the thickness of a perfect cylindrical panel and ε is the non-dimensional parameter
of imperfection. According to the presented formulation, the mid-surface radius a(x) varies in
the axial direction while the inner radius R1 is assumed to be constant. Also the thicknesses
of the panel at two ends are the same for all values of ε, i.e. h(x) = h0 at x = 0, L and
h(x) = h0(1− ε) at x = L/2. The value of β = 2π corresponds to the thick cylindrical shell.
The corresponding displacement functions at the perturbed position for the buckling state

are expressed as

w(r, θ, x) = w0(r, θ, x) + αw′(r, θ, x) v(r, θ, x) = v0(r, θ, x) + αv′(r, θ, x)

u(r, θ, x) = u0(r, θ, x) + αu′(r, θ, x)
(2.2)

where α is an infinitesimally small quantity; w0(r, θ, x), v0(r, θ, x) and u0(r, θ, x) denote initial
values of components of the displacement field and w′(r, θ, x), v′(r, θ, x) and u′(r, θ, x) denote
values of the components of the displacement field in the disturbed position in the radial, circum-
ferential and axial directions, respectively. The stress-strain relations for an isotropic material
are defined as



Buckling of imperfect thick cylindrical shells and curved panels... 27

Fig. 1. Scheme of a curved panel, geometry, coordinates and axisymmetric imperfection

σrr = (2G + λ)εrr + λ(εθθ + εxx) τrθ = Gεrθ

σθθ = (2G + λ)εθθ + λ(εxx + εrr) τrx = Gεrx

σxx = (2G + λ)εxx + λ(εθθ + εrr) τxθ = Gεxθ

(2.3)

where λ and G are the Lame coefficients

G(z) =
E(z)

2(1 + ν)
λ(z) =

E(z)ν

(1 + ν)(1− 2ν)
(2.4)

By substituting the parameters of Eq. (2.2) into linear strain-displacement equations and
using Eq. (2.3), strain and stress components in the perturbed configuration can be obtained in
terms of the components of the displacement field.
The equations of equilibrium are written in terms of the second Piola-Kirchhoff stress ten-

sor σ, in following form (Lai, 1996)

div (σ · FT) = 0 F = I+ r gradV (2.5)

where F is the deformation gradient, V is the displacement vector and I is the unit tensor. For
a three dimensional problem, Eq. (2.5) can be expanded in the radial, circumferential and axial
directions. Considering the linear normal strains εij = ε

0
ij +αε

′

ij and rotations ωij = ω
0
ij +αω

′

ij

as well as stresses and keeping the linear terms in ?, a set of equations for the perturbed state
is developed. The shear strain, shear stress and rotation are assumed to be zero in the initial
conditions; hence the corresponding terms are dropped from the equilibrium equations. Since,
the non-zero normal strains are assumed to be much smaller than 1, i.e. (1+e0rr ≈ 1, 1+e

0
θθ ≈ 1,

1 + e0xx ≈ 1), a system of homogeneous differential equations is obtained, which is linear in the
derivatives of w, v, u with respect to r, θ and x

∂

∂r
(σ0rrε

′

rr + σ
′

rr) +
1

r

∂
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[τ ′rθ + σ

0
θθ(ε
′
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0
xx(ε

′

rx + ω
′

rx)]

+
1

r
(σ′rr + σ

0
rrε
′
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′
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0
θθε
′

θθ) = 0

∂

∂r
[τ ′rθ + σ

0
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0
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1
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′
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′
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0
θθ(ε

′
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′
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[τ ′rx + σ

0
rr(ε
′

rx − ω
′
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∂
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(σ′xx + σ

0
xxε
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1
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∂
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′
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+
1
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[τ ′rx + σ

0
rr(ε
′

rx − ω
′

rx)] = 0

(2.6)
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3. Boundary condition

The boundary conditions of the shell are defined with the help of equilibrium equations using
the second Piola-Kirchhoff tensor σ as

(F · σ) · n = t (3.1)

where t is the traction vector and n is the outward pointing unit normal vector. Applying the
boundary conditions as defined in Eq. (3.1) for the initial and perturbed equilibrium positions,
we have

σ′rr

(

a+
h

2
, θ
)

= σ′rr

(

a−
h

2
, θ
)

= 0 τ ′rθ

(

a+
h

2
, θ
)

= τ ′rθ

(

a−
h

2
, θ
)

= 0

τ ′rx

(

a+
h

2
, θ
)

= τ ′rx

(

a−
h

2
, θ
)

= 0

(3.2)

The stress components σ0rr and σ
0
θθ at the outer and inner lateral surfaces of the shell due

to the action of the lateral pressure p are given by the well known expressions from the linear
elasticity theory (Ciarlet, 1988)

σ0θθ = −p
[

1 +
(R1
r

)2][

1−
(R1
R2

)2]−1
= fθθp

σ0rr = −p
[

1−
(R1
r

)2][

1−
(R1
R2

)2]−1
= frrp

(3.3)

Different types of boundary conditions are considered for the panel edges: Simply Suppor-
ted (S), Clamped (C) and Free (F). The following boundary conditions are defined:

— simply supported (S):

at x = 0, L w = v = σ′xx = 0
at θ = 0, β w = u = σ′θθ = 0

(3.4)

— clamped (C):

at x = 0, L w = v = u = 0
at θ = 0, β w = v = u = 0

(3.5)

— free (F):

at x = 0, L σ′xx = σ
′

xr = σ
′

xθ = 0
at θ = 0, β σ′θθ = σ

′

rθ = σ
′

xθ = 0
(3.6)

4. Buckling load calculation

Equations which are developed in the previous section include rotation and strain terms and
can be used for general shells. Considering the linear strain-displacement equations and applying
the stress-strain relations, i.e. Eq. (2.3), components of the stress field are defined in terms of
components of the displacement field. Finally, by substituting the resulted expression in Eq.
(2.6), the equilibrium equations in the buckled state are defined in terms of the components of
the displacement field.

In the present study, a semi-analytical method called the differential quadrature method is
used to discretize and solve the governing buckling equations. This method suggests that the
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first order derivative of the function f(x) can be approximated as a linear sum of all functional
values in the domain

df

dx

∣

∣

∣

∣

x=xi

=
N
∑

j=1

w
(1)
ij f(xj) for i = 1, 2, . . . , N (4.1)

where w
(1)
ij is the weighting coefficient and N denotes the number of grid points in the domain.

It should be noted that the weighting coefficients are different for different grid points of xi.
The polynomial and Fourier expansion methods are commonly used to determine the weighting
coefficients. In this study, two types of differential quadratures are employed to approximate
the first and second order derivatives of the function, namely the polynomial expansion based
differential quadrature for the radial and the longitudinal directions and the Fourier expansion
based differential quadratures for the circumferential direction (Shu, 2000).
Now, using the unequal spacing scheme for sampling points in the domain and applying the

differential quadrature method for governing equations, we have
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(4.2)

where a
(k)
ij , b

(k)
ij and c

(k)
ij denote weighting coefficients of the k-th order derivative in the r, θ

and x-direction, respectively; N , Q and M are grid point numbers in the r, θ and x-direction,



30 R. Akbari Alashti, S.A. Ahmadi

respectively. Also, it must be noted that the boundary conditions have been discretized by the
differential quadrature method. The critical value of the external pressure Pcr, i.e. the buckling
load, is calculated by solving the set of equations which are transformed into the standard
eigenvalue equation of the following form

(

−[DBG][BB]−1[BD]+[DDG]
)−1(

−[DB][BB]−1[BD]+[DD]
)

[u, v,w]T−P I[u, v,w]T=0

(4.3)

where the sub-matrices [BB], [BD] and [DBG], [DD], [DB], [DDG] result from the boundary
conditions and governing equations, respectively.

5. Numerical results and discussion

In this section, accuracy of the present method is validated against the results reported in the
literature. The normalized results of stability equations for an isotropic thick cylindrical shell
under the action of pure axial compression obtained by the differential quadrature method are
presented in Table 1. For this specific case, Young’s modulus E of the shell is considered to be
14GPa. In this work, for complete cylindrical shells, the perturbed displacements are assumed
to be in the following form

w(r, θ, x) = B(r, x) cos(mθ) v(r, θ, x) = A(r, x) sin(mθ)

u(r, θ, x) = C(r, x) cos(mθ)
(5.1)

where m is the buckling mode in the circumferential direction. Considering relations (5.1), we
obtain a new set of equations that are simpler than equations (4.2). It is observed from this
table that the results are in good agreement with the reported results for thick shells.

Table 1. Normalized buckling load of the shell under pure axial compression E = 14GN/m2,
h = R2 −R1, ν = 0.3, R2 = 1m, L/R2 = 5m, critical load: f = FR2/πEh(R

2
2 −R

2
1)

R2/R1 Present paper Kardomateas (1996) Flugge (1960)

1.15 0.4278 (2) 0.4547 (2,1)∗ 0.4710 (2,1)

1.2 0.4176 (2) 0.4371 (2,2) 0.4620 (2,2)

1.25 0.4191 (2) 0.4426 (2,2) 0.4728 (2,2)

1.3 0.4749 (1) 0.4487 (1,1) 0.4915 (1,1)
∗ (m,n) denote buckling mode numbers in the
circumferential and axial directions, respectively

To study the buckling behavior of a shell with an imperfection, a quantity, λ denoting the
ratios of the buckling loads of the imperfect shell to the perfect shell is considered

λ =
P
(imper)
cr

P
(per)
cr

(5.2)

In this work, it is assumed that the shell is made of aluminum with the elastic modulus
E = 70GPa and Poisson’s ratio of 0.3. The critical buckling modes of the shell are taken
as mcr = 2.7

√

a0/L
4
√

a0/h0. The shell is assumed to have clamped boundary conditions at two
ends. The results of stability equations obtained by the present method for different values of
the imperfection parameter ε for a thick shell with R2/R1 = 1.2 and L/a0 = 1 are compa-
red with the finite element results as shown in Table 2. Comparison of the results presented in
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Table 2, indicates a very good agreement between these results for lower values of the imper-
fection parameter ε. Variation of the buckling load reduction parameter λ of a thick shell with
imperfection subjected to pure external pressure loading is presented in Fig. 2. It is found that
the buckling load reduction parameter has linear variation with the ratio of the outer-to-inner
radius of the shell R2/R1 for higher values of ε. It is also noted that geometrical imperfections
have higher effects on the buckling load of thick shells than thin shells. On the other hand, the
rate of buckling load reduction with ε increases for thicker shells. These results propose the
same pattern as presented by Nguyen et al. (2009) for simply supported thin shells.

Table 2. Normalized buckling pressure and buckling load reduction for pure lateral loading of
an imperfect shell

ε
Present FEM

PcrR2/Eh λ PcrR2/Eh λ

0 0.1266 1 0.1254 1

0.01 0.1240 0.979 0.1222 0.974

0.05 0.1155 0.912 0.1138 0.906

0.10 0.1028 0.811 0.1022 0.814

0.15 0.0897 0.708 0.0882 0.712

0.20 0.0768 0.607 0.0762 0.615

Fig. 2. Variation of the buckling load reduction factor λ with ε and the ratio of R2/R1

Variation of critical pressures with the mode number of a thick cylindrical shell with imper-
fection is presented in Fig. 3. It is revealed from this figure that the critical loads for higher
values of m approaches an asymptotic value, and the buckling load ratio λ remains constant.

Fig. 3. Variation of the critical pressure versus m for a thick cylindrical shell
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The effect of the ratio of the length-to-mid-plane radius, i.e. L/a0 on the critical load of an
imperfect cylindrical shell with R2/R1 = 1.2 subjected to uniform lateral pressure is shown in
Fig. 4. The results are given for the buckling mode number m = 2. It is realized from Fig. 4
that as the ratio of L/a0 increases, the buckling load approaches an asymptotic value.

Fig. 4. Variation of the buckling pressure of a thick imperfect shell versus L/a0

Next, the effect of the imperfection parameter ε on the buckling behavior of a thick cylindrical
shell under the action of uniform external pressure is investigated. Buckling loads for various
ratios of the external-to-internal radius of the shell with L/a0 = 1 are shown in Fig. 5. It is
evident from the figure that for small values of ε, the imperfection has a higher effect on the
buckling behavior of the shell under lateral pressure loading, however the rate of reduction of
the buckling load reduces as the load factor increases. It is also found that as the thickness of the
shell increases, the variation of the buckling pressure increases with the imperfection parameter.

Fig. 5. Variation of the critical pressure with ε

In this part, in order to study the effect of boundary conditions on the buckling behavior of
thick cylindrical shells, the results for different ratios of R2/R1 are shown in Fig. 6. Different
boundary conditions such as simply supported (S), clamped (C) and free (F) are considered for
the shell. It can be seen that, as expected, the shell with clamped-clamped boundary condition
has a higher buckling load than other shells, and the one with free boundary conditions has a
very low buckling pressure.

Buckling pressures and the buckling load reduction parameter λ for an imperfect thick
shell under the action of pure external pressure loading with various boundary conditions are
presented in Table 3. As shown in the table, in the case of the simply supported condition, the
imperfections have a higher effect on the buckling behavior of shells, and the rate of decrease of
the buckling load reduction parameter is higher than for other boundary conditions.
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Fig. 6. Effect of the boundary condition on the buckling pressure of a cylindrical shell

Table 3. The buckling pressure and buckling load reduction parameter for different boundary
conditions

ε
C-C S-C S-S

pcr [GPa] λ pcr [GPa] λ pcr [GPa] λ

1 1.52 1 1.38 1 1.2 1

0.01 1.497 0.978 1.356 0.983 1.177 0.981

0.05 1.36 0.9 1.23 0.89 1.061 0.884

0.1 1.205 0.793 1.08 0.783 0.919 0.766

0.15 1.056 0.695 0.93 0.674 0.783 0.653

0.18 0.97 0.638 0.85 0.616 0.703 0.586

0.2 0.912 0.6 0.79 0.572 0.65 0.54

Next, the buckling behavior of a thick cylindrical panel with different boundary conditions
is investigated. Various boundary conditions are considered for edges of the panel as shown in
Fig. 7. The variation of buckling pressure for two sets of boundary conditions versus the panel
angle β is presented in Fig. 8. It is assumed that the geometrical parameters of the shell are
L/a0 = 1 and R2/R1 = 1.2. It can be seen that the buckling load decreases and approaches an
asymptotic value as β increases.

Fig. 7. Boundary conditions for a thick panel

Buckling pressures in GPa for different ratios of the external-to-internal radius R2/R1 for
thick panels with L/a0 = 1 and β = π/2 are given in Table 4. Different boundary conditions
are considered for edges as shown in Fig. 7. It is revealed from this figure that the panel with
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Fig. 8. Effect of panel curvature on the buckling pressure of a thick panel

the CSCS boundary condition has the largest buckling load. For the case of R2/R1 = 1.2 and
various boundary conditions according to Table 4, the buckling modes obtained by finite element
software ANSYS are shown in Fig. 9.

Table 4. Buckling pressure of the panel with β = π/2 versus R2/R1 for various boundary
conditions

R2/R1 CSCS SCSC FCCC FCFC FSCS

1.05 0.066 0.0597 0.051 0.042 0.026

1.1 0.392 0.33 0.3 0.24 0.12

1.15 0.984 0.87 0.67 0.59 0.31

1.2 1.74 1.6 1.25 1.16 0.604

1.25 2.58 2.43 1.94 1.8 0.98

1.3 3.44 3.3 2.66 2.4 1.8

Fig. 9. Buckling modes of panels, β = π/2, with different boundary conditions

The effects of geometrical imperfections on the ultimate load caring capacity of panels
are studied. The buckling pressures and buckling load reductions for panels with L/a0 = 1,
R2/R1 = 1.2 and different boundary conditions are presented in Table 5. Among given boun-
dary conditions in Table 5, the buckling response of panels with four clamped edges is more
sensitive to the imperfection parameter than in other cases.
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Table 5. The buckling pressure and buckling load reduction of the panel, β = π/2, for different
boundary conditions

ε
CCCC FCCC CSCS FSCS

pcr [GPa] λ pcr [GPa] λ pcr [GPa] λ pcr [GPa] λ

0 1.74 1 1.25 1 1.53 1 0.604 1

0.05 1.59 0.91 1.19 0.952 1.39 0.91 0.597 0.98

0.10 1.435 0.82 1.117 0.894 1.25 0.82 0.58 0.95

0.15 1.29 0.74 1.03 0.826 1.11 0.73 0.54 0.90

0.20 1.14 0.65 0.94 0.75 0.98 0.64 0.512 0.84

6. Conclusion

In the present paper, the stability equations of thick cylindrical panels are obtained using the
benchmark three-dimensional elasticity solution. The buckling analysis of such panels under
the action of uniform lateral pressure loading is carried out. Different boundary conditions,
namely simply supported, clamped and free are considered for the edges of panels. The effect
of an axisymmetric and periodic initial imperfection on the critical buckling load of the panel
is investigated. The resulting differential equations are discretized and solved by the differential
quadrature method. Effects of the shell geometric and imperfection parameters and boundary
conditions on the buckling behavior of cylindrical shells and panels are investigated. It is found
that the initial imperfection can significantly reduce ultimate load carrying capacities of these
structures. Such a limit load reduction is found to be linear for small values of the thickness
imperfection parameter ε. It is also shown that the imperfections have higher effects on the
buckling behavior of thick panels than on thin ones.
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